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ABSTRACT
The neural encoder-decoder framework is widely adopted for image
captioning of natural images. However, few works have contributed
to generating captions for cultural images using this scheme. In
this paper, we propose an artwork type enriched image captioning
model where the encoder represents an input artwork image as a
512-dimensional vector and the decoder generates a corresponding
caption based on the input image vector. The artwork type is first
predicted by a convolutional neural network classifier and then
merged into the decoder. We investigate multiple approaches to
integrate the artwork type into the captioning model among which
is one that applies a step-wise weighted sum of the artwork type
vector and the hidden representation vector of the decoder. This
model outperforms three baseline image captioning models for
a Chinese art image captioning dataset on all evaluation metrics.
One of the baselines is a state-of-the-art approach fusing textual
image attributes into the captioning model for natural images. The
proposed model also obtains promising results for another Egyptian
art image captioning dataset.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Com-
puting methodologies→ Scene understanding.
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1 INTRODUCTION
The application of artificial intelligence techniques to the cultural
heritage field has attracted increasing attention in recent years
[8, 21, 22, 28–30, 39]. Most of these work focus on automatic meta-
data annotation such as predicting the author, material, and date
of an artwork. In this work, we target automated image caption
generation for cultural heritage images employing a deep neural
network. This captioning of images would allow a visitor of a mu-
seum or cultural heritage site to obtain a detailed description of an
artwork on his or her mobile device by just taking the picture of
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Figure 1: An Egyptian artwork image with its caption.

the artwork. Such a service would facilitate the personalized inter-
action between artworks and art lovers. Besides, such a captioning
system could be used for automatically generating explanations
in a catalogue of artworks to be searched online, hereby saving
time and labor of manual annotation. We show the feasibility of
captioning images of artworks with two collections of images, one
containing ancient Egyptian (8000 B.C. - 1000 A.D.) and the other
ancient Chinese (1368 A.D. - 1912 A.D.) artwork images. Figure 1
shows an exemplary artwork image and its ground-truth caption.

Generating captions for ancient artworks faces three key domain-
specific challenges compared with image captioning for natural
images. First, the captions for ancient artworks often contain high-
level semantic information beyond the image content such as the
background of a historical person, human judgment and uncertain
illustrations based on expert speculation about artworks which are
indicated by the caption word ‘probably’. For example, the Egyp-
tian artwork caption in Figure 1 contains the explanation of the
lion’s symbolic meaning in history. This information is obviously
difficult to be derived from the artwork image. In [37], the authors
also demonstrate that a cultural image is a narrative image with
stories behind it. In such a setting, it is challenging to generate
good descriptions leveraging only on artwork images. Second, pro-
fessional knowledge is needed to annotate ancient artwork images.
This makes it unrealistic to train with a dataset of a size similar
to the one of datasets with natural images such as MSCOCO [20].
The datasets employed in previous research on automated cultural
image annotation [35, 37, 38] are composed only of a few hundred
images. Lastly, the textual descriptions for ancient artifacts used for
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training a model often contain many special symbols and incom-
plete sentences [18], posing additional challenges when generating
well-formed captions.

To address the issues mentioned above, we introduce an artwork
type enriched image captioning model in the encoder-decoder par-
adigm. The assumption is that the type of an artwork has a latent
influence on the caption content no matter whether it actually oc-
curs in the caption or not. We select this meta-data also because we
empirically believe that the artwork type will be more accurately
predicted than other meta-data information e.g., the period of an
artwork [30]. We have explored several approaches to incorporate
the artwork type into the captioning model, for example, by con-
catenating the input image vector and the artwork type vector or
by computing a step-wise weighted sum of the artwork type vec-
tor and the hidden representation that produces the output of the
decoder. Overall, the main contributions of this paper are:

(1) We collect two image captioning datasets referring to ancient
Egyptian art and ancient Chinese art. They contain respec-
tively 17,940 and 7,607 artwork images and corresponding
captions.

(2) We propose an artwork type enriched encoder-decoder im-
age captioning model for ancient works. This model explic-
itly encodes the relative importance of the artwork type
vector and the hidden representation that produces the out-
put of the decoder before they are fed into the fully con-
nected layer. It outperforms three baseline image captioning
models for the Chinese art image captioning dataset on all
evaluation metrics. One of the baselines is a state-of-the-
art approach among the works integrating textual image
attributes into the captioning model for natural images. The
proposed model also achieves encouraging results for the
Egyptian art image captioning dataset.

(3) We investigate multiple approaches to incorporate the art-
work types into the captioning model and test the efficiency
of three existing image captioning models built for natural
images when they are applied to annotate cultural images.

(4) A comprehensive quantitative and qualitative analysis on
the results of all the models introduced in this work is made
to guide future research.

The remainder of this paper is organized as follows. Section 2
reviews related research. Next, Section 3 describes our model archi-
tecture. Section 4 illustrates the experiments and evaluation metrics
and then Section 5 discusses the results obtained by different mod-
els. Finally, Section 6 concludes this paper and provides directions
for future research.

2 RELATEDWORK
2.1 Multi-class and Multi-label Classification
Single-label multi-class image classification [6] regards the task
of classifying the image with one type of artwork chosen from a
set of artwork types. In the multi-label classification of images [7],
an image can be labeled with multiple compatible artwork types
from a set of artwork types, for example, an artwork can be labeled
as both statue and stone. The artwork types in the single-label
multi-class classification task are fine-grained, e.g., an artwork is
labeled as metalwork relief instead of a coarse-grained category

relief. In contrast, coarse-grained artwork types are used in the
multi-label image classification task, e.g., relief, sculpture, and stone.
Wewill experiment with both tasks and corresponding classification
taxonomies when testing whether the artwork type granularity
influences captioning performance.

Many works have been devoted to multi-class cultural image
classification. In [25], the authors classify images of Mexican build-
ings into three different architectural styles with GoogleNet [32]
and AlexNet [16]. In [41], a small dataset comprising 432 images cor-
responding to 4 regions of cultural interest is collected from Flickr
and then the image labels are predicted by the fine-tuned AlexNet.
This work demonstrates that art type prediction is more accurate
using the fine-tuned AlexNet convolutional neural network (CNN)
architecture than when implementing a support vector machine
(SVM) with SIFT features [24]. Yang and Min [39] perform classi-
fication on multiple art datasets using various CNN architectures
and confirm that DenseNet [12] achieves the best performance.
Unlike the dataset used in [39] which contains mostly paintings,
our dataset consists of various artwork types. Therefore, in this
paper we have chosen ResNet [9] as backbone neural architecture
which is proved to obtain good results on multiple computer vision
tasks, e.g., object detection and image classification. No efforts have
been put into the multi-label classification for cultural images as
far as the authors know.

2.2 Image Caption Generation
Several studies have contributed to generating annotations or de-
scriptions for cultural images [35, 37, 38]. In [35], an automatic
linguistic indexing system of pictures is built to learn the expertise
of a human annotator based on a small-scale annotated EMPEROR
Collection. More intuitively, the authors first train a 2-D multireso-
lution hidden Markov model (2-D MHMM) to find the correspon-
dence between a cultural image and its descriptive concepts. Then,
when a new unannotated image comes in, this system describes the
new image with the learned concepts of a similar image indexed
in the system. This approach is called retrieval-based image cap-
tioning [11], but it cannot generate image-specific captions. Xu and
Wang [38] and Xu et al. [37] introduce respectively an ontology
and hierarchical model to perform image description creation of
Dunhuang frescoes which constitute a special area in the field of
Chinese cultural heritage. The two latter works leverage low-level
image features e.g., the image texture and meta-data of cultural
images but encode them in different-structured models. All of the
above works heavily rely on feature engineering.

Current state-of-the-art encoder-decoder image captioning mod-
els for natural images are data-driven methods using powerful deep
neural networks. Vinyals et al. [34] introduce the first image cap-
tioning model using a classical encoder-decoder schema. In contrast
to Vinyals et al. [34] who consider the image as the input for the
first decoding step, the models proposed in [36] dynamically attend
to the input image vector at each step in the decoder module. Al-
though these works obtain good results for natural images, it is not
known yet whether they can achieve equally nice performance for
cultural images due to the domain-specific challenges mentioned in
Section 1. In this work, we test the effectiveness of the above models
for generating captions for images of ancient Egyptian and Chinese



artworks. Recently, Anderson et al. [2] have proposed to represent
the whole image with salient regions and achieve state-of-the-art
performance when this image representation method is employed
for image captioning of natural images. Due to the lack of region
information for the images of the artworks, in the research that we
report we only use representations of the whole image. Different
from Vinyals et al. [34] and Xu et al. [36] who pursue performance
improvement by manipulating images, in [40], the authors treat
both the textual image attributes and the previous word in a caption
as independent inputs of the decoder module. Our artwork type
enriched captioning model is mainly inspired by this work. But
instead of applying an element-wise addition to the attribute vector
and the word vector obtained from the previous step, we merge
the artwork type and hidden representation output of the decoder
in the very top layer of the decoder. We also explicitly model the
relative importance of these two elements at each decoding step.
This way, we assume that the artwork type can guide the decoding
network more clearly.

3 METHODOLOGY
Figure 2 gives an overview of our model. We have implemented
an encoder-decoder framework for image captioning where the
encoder is a CNN and the decoder is a long short-term memory
(LSTM) network [31]. The encoder in our model extracts not only
the input image vector but also the artwork type representation of
an artwork. These two vectors are then inputted into different gates
of the decoder. Formally, given an input image Ii , a CNN encoder is
applied to extract its feature vector Ii f and the artwork type vector
Ti . Then, the LSTM decoder is adopted to generate the caption Si
= {Si0, Si1, ..SiNs } depending on the two elements Ii f and Ti . Ns
equals the caption length.

In this section, we first describe the encoder structure to extract
the image feature vector and the artwork type vector. Next, we
elaborate on how we incorporate the artwork type vector into the
decoder module. Finally, we introduce alternative models that we
have implemented.

3.1 Encoder
The encoder is employed to extract the image feature vector and
artwork type vector. As mentioned in Section 2.1, we performmulti-
class classification and multi-label classification to check the gran-
ularity effects of the artwork types. For both multi-class classifica-
tion and multi-label classification, the encoder uses the 18-layer
ResNet18 structure followed by an adaptive pooling operation on
the sub-image information as shown in the first row of Figure 2.
The ResNet18 structure is eventually selected because it extracts
a lower-dimensional input image feature vector and can thus re-
duce the dimensional gap between the input image vector and the
artwork type vector. This will eliminate the dimensional influence
when modulating their relative importance in the captioning task.
The CNN model is initialized from the ResNet18 pre-trained on Im-
ageNet [16]. This shared CNN is then fine-tuned on the multi-class
or multi-label dataset.

In the multi-class classification task, given an input image Ii , the
output of the last fully-connected layer is fed into a c-way softmax
over theC class labels. Suppose that there are N training examples,

ysi= [ysi1,ysi2, ...,ysiC ] is the ground-truth one-hot encoded vec-
tor of the i − th image where ysi j = 1 if the image is annotated
with artwork type j, and ysi j = 0 otherwise. If the predictive prob-
ability vector is psi = [psi1,psi2, ...,psiC ], the cost function to be
minimized for this task is:

Cs = − 1
N

N∑
i=1

C∑
j=1

ysi j loд(psi j ) (1)

In contrast, the output of the last fully-connected layer in the
multi-label classification task is inputted into a sigmoid function
where given an input image Ii , the sum of all the elements in the
output vector does not equal to one. Suppose the label vocabu-
lary size is E in this task, the ground-truth multi-label vector is
ymi= [ymi1,ymi2, ...,ymiE ], and pmi = [pmi1,pmi2, ...,pmiE ] is the
respective predicted vector. The goal is to minimize the following
binary cross entropy loss:

Cm = − 1
N

N∑
i=1

E∑
j=1

(
ymij loд(pmij ) + (1 − ymij )loд(1 − pmij )

)
(2)

Training. Mini-batch stochastic gradient descent is used to op-
timize the fine-tuning process with a mini-batch size of 256. The
learning rate and the momentum are set to 0.001 and 0.9 respec-
tively, no dropout operation is involved. All the layers in ResNet18
except the last fully connected layer are fixed during training. We
executed 100 epochs in total. The 512-dimensional vector obtained
from the adaptive pooling operation serves as the input image fea-
ture vector Ii f and the network output is considered as the artwork
type representationTi . We will introduce how we use these vectors
in the following section. Note that training the encoder is performed
beforehand instead of end-to-end with the decoder.

This encoder structure can be replaced by a region proposal
network [27] if partial-image information is available in the future.

3.2 Decoder
The decoder is an image caption generator, i.e., it is trained to predict
each word of the caption sentence for an input image. But instead
of treating only the input image as an element in the decoding
process, we also consider the artwork type vector obtained from
the encoder module as an independent input. In such a case, given
an input image Ii , the goal is to maximize the probability of the
correct description given the image and its artwork type using the
following formulation:

θ∗ = argmax
θ

∑
(Ii f ,Ti )

loд p(Si |Ii f ,Ti ) (3)

where θ are the parameters of our model, and Ii f and Ti are re-
spectively the image feature vector and artwork type vector. Si
= {Si0, Si1, ..SiNs } represents the correct transcription, and the
probability to generate this sentence can be computed as follows
according to the language model [4]:

loд p(Si |Ii f ,Ti ) =
Ns∑
t=1

loд p(Sit |(Ii f ,Ti ), Si0, ..., Si(t−1)) (4)



Figure 2: The framework of the proposed model. The module in the first row is the encoder extracting both the input image
vector and the artwork type vector. The decoder in the second row contains a merge-gate where the inputs are the hidden
representation of an LSTM network and the artwork type vector. This merge gate is then used to predict the probabilities that
each word in the dictionary will be generated.

where we dropped the dependency on θ for convenience.
It is natural to model equation 4 with an LSTM network. The

core of the LSTM network is a memory cell c that encodes at every
time step the inputs having been observed up to this step. In our
model, the LSTM network produces a caption by generating one
word at every time step conditioned on the artwork type vector Ti ,
the hidden state created in the last time stepht−1 and the previously
generated word xt . We implement it as follows for time step t :

ft = siдmoid(Wf xxt +Wf hht−1 + bf ) (5)
it = siдmoid(Wixxt +Wihht−1 + bi ) (6)
ot = siдmoid(Woxxt +Wohht−1 + bo ) (7)
дt = tanh(Wдxxt +Wдhht−1 + bд) (8)

ct = ft ⊙ ct−1 + it ⊙ дt (9)
ht = ot ⊙ tanh(ct ) (10)

pt = FC(αt ∗ ht + βt ∗Ti ) (11)
Here, ft , it , ot and ct are respectively the input, forget, output

andmemory state of the LSTM. The variousW matrices andb vector
are trainable parameters. The image, the words, and the artwork
type are mapped to the same space, where the image is represented
by its CNN embedding, the words by their word embeddings and
the artwork type by using a CNN followed by a linear projection
layer. Symbol ∗ in equation 11 refers to a scalar multiplying a vector.

In this decodermodule, we propose to set up two trainable weight
vectors α = [α1,α2, ...,αNmax ] and β = [ β1, β2,...,βNmax ] to ex-
plicitly encode the relative importance of respectively the hidden
representation and artwork type before they are used to predict
the caption words probability. Nmax is the maximum length of the
training captions. More specifically, at each time step t , a weighted
sum of the hidden representation ht and the artwork type vector
Ti serves as the input to a fully connected (FC) layer and the prob-
ability of each word in the training vocabulary will be generated.

This approach is represented by equation 11. The weights in α and
β are automatically learned by the model during training. In such a
way, we let the two elements ht and Ti guide the learning of the
LSTM network more clearly. Moreover, by treating the artwork type
vector Ti as an independent input to the fully connected layer, its
guiding process is not affected by the previously generated word in
the decoder, the artwork type vector can therefore guide the LSTM
in a right way even if the previously generated word is wrongly
predicted.

Training.We represent each word as a one-hot vector Sit ∈ RV

where V equals to the size of the vocabulary. The word embedding
of a word is obtained by applying a projection layer to the one-hot
vector. We denote by Si0 a special start word and by SiNs a special
delimiter word which designate the start and end of the sentence.
In particular, by emitting this delimiter word, the LSTM signals that
a complete sentence has been generated. The image feature vector
Ii f is only inputted once, at t = 0, to inform the LSTM about the
image contents. Our loss is the sum of the negative log likelihood
of the correct word at each step as follows:

L(Ii f ,Ti , Si ) = −
Ns∑
t=1

loд pt (Sit ) (12)

The above loss is minimized with regard to all model parameters in
the decoder. The weight parameters in equation 5-11 are initialized
from a uniform distribution with a range between -0.1 and 0.1. The
weight parameters in α and β are initialized as random numbers
between 0 and 1 from a normal distribution.

We refer to this model as LSTM-MC-OUTdynamic when using
themulti-class classifier as the encoder and LSTM-ML-OUTdynamic
when using the multi-label classifier as the encoder. The twomodels
are differentiated by ‘MC’ (multi-class) and ‘ML’ (multi-label) in
their model names. ‘dynamic’ in the model names is an indication
of the multiple different modulating weights in α and β and ‘OUT’



suggests that the artwork type is treated similarly to the hidden
representation as the output of the LSTM network.

3.3 Model variants
To better explore how to incorporate the artwork type into the
captioning model, we investigate several variants of the LSTM-MC-
OUTdynamic model that might bring performance improvements.
The settings of these models are exactly the same as the one used in
the LSTM-MC-OUTdynamic model except for the following parts:

(1) LSTM-MC-OUT This model also encodes the artwork type
vector Ti together with the hidden representation output ht
as model LSTM-MC-OUTdynamic . But instead of consider-
ing their relative importance to conduct the final prediction,
this model applies a direct element-wise addition of the two
vectors with this formulation:

pt = FC(ht +Ti ) (13)

(2) LSTM-MC-INdynamic Instead of putting the artwork type
vector obtained by the multi-class classifier right before the
fully connected layer to predict the caption word in the
LSTM decoder (equation 11), this model feeds the artwork
type vector to the decoder along with the word generated
from the previous step, i.e., thext in equation 5-8 are replaced
with the following equation:

xt = αt ∗ xw (t−1) + βt ∗Ti (14)

where xw (t−1) is the word generated at time step t − 1 and
Ti is the artwork type vector. Correspondingly, the equation
to predict the word at time step t becomes:

pt = FC(ht ) (15)

‘IN’ in the model name suggests that the artwork type is
treated similarly to the previously generated word as the
input of the LSTM network.

(3) LSTM-MC-OUTstatic This model incorporates the artwork
type vector to the LSTM in the same way as the LSTM-MC-
OUTdynamic model. But instead of setting up two trainable
vectors α and β which can modulate the artwork type vector
and the hidden representation in a step-wise fashion, this
model sets up two trainable scalars in the decoder which are
the same for all the time steps in the decoding process. We
use ‘static’ in the model name to indicate the modulating
behavior in this model.

(4) LSTM-MC-INstatic This model is the same as the LSTM-
MC-INdynamic model but sets up two trainable scalars to
modulate the previously generated word xw (t−1) and the
artwork type vector Ti as model LSTM-MC-OUTstatic does.

(5) LSTM-MC-global controller This model concatenates the
image feature vector and the artwork type vector, then feeds
the concatenated vector into the first step of an LSTM net-
work to generate caption words of the respective image.

The multi-class classifier encoder in the above models can be
replaced by the multi-label classifier for the ancient Egyptian
art image captioning dataset introduced in Section 4.1, but we
leave this out to keep the proposed model variants employed
for the two captioning datasets consistent.

InferenceWe use beam search to generate words in the test phase.
It iteratively considers the set of the k best sentences up to time
t as candidates to generate sentences at time step t + 1, and keep
only the resulting best k of them.

4 EXPERIMENTS AND EVALUATION
4.1 Datasets
The datasets involved in this work are collected from the following
online sources: the Metropolitan Museum 1, the Brooklyn Museum
2, and the British Museum 3. Based on these sources, we have cre-
ated two image captioning datasets: the ancient Egyptian art image
captioning dataset and the ancient Chinese art image captioning
dataset. The two datasets are collected based on the geographical
location of the origin of the artworks because caption words may
differ much depending on the cultural background of the location.
Detailed statistics of the two datasets are shown in Table 1. We
also build three artwork type classifier datasets to train the en-
coder: the Egyptian art multi-class classifier dataset, the Egyptian art
multi-label classifier dataset, and the Chinese art multi-class classifier
dataset. The artworks types in the classifier datasets are standard
artwork type categories defined in the Metropolitan Museum or
the British Museum. We have not managed to find a suitable multi-
label classifier dataset for Chinese art. These classifier datasets are
created separately from corresponding captioning dataset, i.e., the
overlaps between a classifier dataset and respective image caption-
ing dataset are not counted. Statistics of the three classifier datasets
are given in Table 2.

Dataset Num. Artworks Aver. Len Num. Tokens
Egyptian 17940 9 10722
Chinese 7607 10 5902

Table 1: Statistics of the captioning datasets.

Dataset Num. Artworks Num. types
Multi-class Egyptian 5300 237
Multi-label Egyptian 11303 100
Multi-class Chinese 7433 519

Table 2: Statistics of the classifier datasets.

For the classifier datasets, we conduct offline data augmentation
e.g., image flipping, cropping or transformation to improve the
performance and robustness of the classification models. For the
captioning datasets, the paragraph-level descriptions are split into
multiple sentences and a maximum of 5 sentences are retained for
each artwork to reduce data imbalance. In addition, we remove
noisy texts from the captions following a specific pattern, e.g, “See
13.26.59”. The number is the accession number of an artifact that
obviously cannot be derived from the input image or artwork type.
We also remove duplicate images in the captioning datasets based
on their hash code. Tokens occurring less than 2 times are removed
from the training vocabulary. The datasets are all split into an 80%,
10%, and 10% partition for respectively training, validation, and
test.
1https://www.metmuseum.org/art/collection
2https://www.brooklynmuseum.org/opencollection/collections
3https://www.britishmuseum.org/research/collection_online/search.aspx



4.2 Experimental Setup and Evaluation
Besides themodels introduced in Section 3.2 and Section 3.3, we also
experiment with three existing baseline image captioning models:

(1) Model NIC [34] puts the image into the first step of the
LSTM decoder with no visual attention and extra textual
input involved.

(2) Model SA is the soft-attention model introduced in [36]
which puts the image vector dynamically into every step of
the LSTM decoder.

(3) Model LSTM-A5 is the best-working model among all the
models proposed in [40] and it is originally one of the state-
of-the-art image captioning approaches integrating textual
image attributes for natural images. Although this model
also treats the textual attributes as independent input, it
operates on the attribute-inputs in the lower layer of the
LSTM network, that is, an element-wise addition with the
previously generated word is exploited. We split the LSTM-
A5 model into two versions LSTM-A5-MC and LSTM-A5-ML
where the first version utilizes the multi-class classifier as
the encoder and the latter one adopts a multi-label classifier
as the encoder.

We implement all the image captioning models in Pytorch [14].
The dimensions of the image feature vector, the word embeddings,
the artwork type vector, and the hidden layer of the LSTM decoder
are set to 512. The Adam optimizer [15] is adopted in the back-
propagation process with a learning rate of 0.0001 and a dropout
rate of 0.5. A beam size of 5 is empirically selected for all the models.
We use accuracy [10] to grade the classification achievement of
the encoder. To evaluate the captioning performance, we adopt
five types of metrics: BLEU@N [26], ROUGE-L [19], METEOR [3],
CIDEr [33] and SPICE [1]. All the metrics are computed by using
the code released by the COCO Evaluation Server [5].

5 RESULTS AND DISCUSSIONS
Table 3 shows the results comparison for the captioning models.
Overall, the captioning performance for cultural heritage images
is lower compared to the performance when captioning natural
images. The best BLEU-1 score has been up to 0.817 for natural
image captioning as communicated in Microsoft COCO image cap-
tioning challenge leader board4, while the best BLEU-1 score for
annotating cultural images is only 0.54 obtained by the proposed
model LSTM-MC-OUTdynamic on the ancient Chinese art image
captioning dataset. For this captioning dataset, model LSTM-MC-
OUTdynamic outperforms all other models and holds a maximum
improvement of 4% in BLEU-1 score compared with the baseline
captioning model LSTM-A5-MC. For the ancient Egyptian art im-
age captioning dataset, model LSTM-MC-OUTdynamic , LSTM-MC-
OUT, and LSTM-ML-OUTdynamic are competing with the best-
working baseline captioning model LSTM-A5-MC when evaluated
by ROUGE_L which shows better correlation with human judg-
ments than BLEU scores.

4https://competitions.codalab.org/competitions/3221results

5.1 Quantitative Analysis
(1) Benefits of adding artwork types. We have tested multiple
models to assess the effect of adding artwork type information. The
proposed model LSTM-MC-OUTdynamic and the baseline model
LSTM-A5-MC achieve better results than bothmodel NIC andmodel
SA for respectively the ancient Chinese art image captioning dataset
and the ancient Egyptian art image captioning dataset as shown in
Table 3, wherein LSTM-MC-OUTdynamic on the ancient Chinese
art image captioning dataset obtains 4% higher BLEU-1 score than
that of model NIC, this score is 8% higher compared with model SA.
The baseline LSTM-A5-MCmodel on the ancient Egyptian art image
captioning dataset obtains 3% higher BLEU-1 score than model NIC
and 4% higher BLEU-1 score than model SA. Model LSTM-MC-
OUTdynamic and the baseline model LSTM-A5-MC attend both
the input image feature vector and the artwork type vector while
model NIC and model SA rely on only the input image in the cap-
tioning process. This proves the advantage of adding artwork type
information into the captioning model. But most other models that
integrated the artwork type information failed to boost the cap-
tioning performance for the ancient Egyptian art image captioning
dataset, confirming the challenge of effectively adding artwork
type into the captioning model. In addition, the proposed model
LSTM-MC-OUTdynamic obtains better performance with a large
improvement over the baseline LSTM-A5-MC on the ancient Chi-
nese art image captioning dataset and also competing results with
LSTM-A5-MC evaluated by ROUGE_L on the ancient Egyptian art
image captioning dataset. But the advance of the baseline LSTM-A5-
MC for the ancient Chinese art image captioning dataset is much less
than our proposed model LSTM-MC-OUTdynamic . We therefore
conclude that our proposed model LSTM-MC-OUTdynamic is more
robust than the baseline LSTM-A5-MC model.
(2) Effects of visual attention. We also explicitly evaluate the
effects of visual attention in the decoding process by comparing
model NIC and SA, where NIC feeds the image input into only the
first decoding step and SA instead enforces visual attention at each
time step in the decoder. Model SA performs worse than model
NIC on both image captioning datasets as indicated in Table 3. This
is different from the case when visual attention mechanisms are
applied to models for captioning natural images, probably because
image captions for artworks contain many expressions which are
beyond what is happening in the image and in which case visual
attentions can mislead the decoder. For example, “Thus all mummies
of humans and animals imitated the mummification process and form
followed to reanimate Osiris in the next world” is a sentence referring
to the image of a mummy, and it is actually a story behind the
mummy instead of a description of the mummy itself.
(3) Effects of the artwork type granularity. It is interesting to
investigate whether the captioning performance improves when
we provide multiple coarse-grained compatible types of an artwork
into the model. For this purpose, we build model LSTM-A5-MC and
LSTM-A5-ML which refer to using respectively the fine-grained
single-label artwork type and coarse-grained multi-label artwork
types in the captioning model. It turns out that integrating a single
label model wins on most metrics as shown in Table 3. This is prob-
ably due to the lower multi-label classification performance. The
accuracy achieved by the multi-class image classification model in



Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE_L METEOR CIDEr SPICE
Ancient Egyptian Art Image Captioning Dataset

NIC [34] 0.44 0.34 0.30 0.27 0.43 0.19 1.82 0.28
SA [36] 0.43 0.34 0.29 0.26 0.43 0.19 1.82 0.27
LSTM-A5-ML [40] 0.46 0.36 0.31 0.28 0.44 0.19 1.87 0.28
LSTM-A5-MC [40] 0.47 0.38 0.33 0.30 0.44 0.20 1.81 0.29
LSTM-MC-global controller 0.38 0.27 0.19 0.15 0.41 0.14 1.59 -
LSTM-MC-INstatic 0.38 0.27 0.19 0.15 0.41 0.14 1.59 -
LSTM-MC-OUTstatic 0.42 0.33 0.28 0.25 0.42 0.19 1.74 -
LSTM-MC-INdynamic 0.32 0.19 0.11 0.06 0.37 0.12 1.18 0.20
LSTM-MC-OUT 0.42 0.32 0.28 0.25 0.44 0.19 1.84 -
LSTM-MC-OUTdynamic 0.42 0.33 0.28 0.25 0.44 0.19 1.82 -
LSTM-ML-OUTdynamic 0.42 0.33 0.28 0.26 0.43 0.20 1.83 0.27

Ancient Chinese Art Image Captioning Dataset
NIC [34] 0.50 0.42 0.36 0.32 0.53 0.20 0.94 0.18
SA [36] 0.46 0.38 0.33 0.29 0.50 0.19 0.80 0.16
LSTM-A5-MC [40] 0.50 0.42 0.37 0.33 0.53 0.20 0.91 0.18
LSTM-MC-global controller 0.54 0.45 0.38 0.35 0.54 0.22 0.96 0.19
LSTM-MC-INstatic 0.42 0.32 0.25 0.20 0.49 0.16 0.69 0.15
LSTM-MC-OUTstatic 0.54 0.45 0.37 0.32 0.55 0.21 0.94 0.19
LSTM-MC-INdynamic 0.34 0.20 0.12 0.07 0.43 0.13 0.51 0.12
LSTM-MC-OUT 0.53 0.44 0.37 0.33 0.53 0.20 0.93 0.18
LSTM-MC-OUTdynamic 0.54 0.45 0.39 0.35 0.55 0.22 0.97 0.19

Table 3: Performance comparison of different models evaluated on five standard metrics for image captioning. ‘-’ means eval-
uation not conducted.

the encoder is 0.93 for the Egyptian art multi-class classifier dataset
while the mean average accuracy for the multi-label classifier ex-
perimented on the Egyptian art multi-label classifier dataset is 0.59.

(4) Effects of the artwork type location in the decoder and
encoding the relative importance of the artwork type and
the other input coming along with it. We test the location in-
fluence on the captioning performance using models differentiated
by ‘IN’ and ‘OUT’ in Table 3. Experiments demonstrate that the
artwork type is helpful to improve the captioning performance as
an input of either the LSTM or the fully connected layer predicting
the caption words. We compare model LSTM-A5-MC with model
NIC to assess the improvement when the artwork type serves as
input to the LSTM network. The comparison of model LSTM-MC-
OUTdynamic and model NIC evidence an increase in performance
when the artwork type serves as the input to the fully connected
layer. Please refer to Table 3 to check the differences in results. The
other interesting observation worth noting is that the effects of
encoding the relative importance of the artwork type and the other
input coming together with it are closely related to the artwork
type location in the decoder. More specifically, when the artwork
type vector serves as the input of the LSTM network together with
the previously generated word in the decoder in the lower layer,
ignoring the relative importance of the two inputs provides better
guidance to train the model. This is indicated by the performance
difference between model LSTM-A5-MC that ignores the relative
importance and model LSTM-MC-INdynamic that encodes the rel-
ative importance. In contrast, encoding the relative importance

when the artwork type vector is provided into the fully connected
layer together with the hidden representation output of the LSTM
network, yields slightly better results evidenced by the comparison
of model LSTM-MC-OUTdynamic and model LSTM-MC-OUT. We
model the relative importance of the artwork type and the other
parallel input by using a weighted sum function. The weights to
modulate the relative importance are automatically learned by the
model during training. β_t and α_t are the learned weight values
for the object type vector and the LSTM output vector at time step t
in model LSTM-MC-OUT_dynamic . Their relative weight values in
the first few steps are very small as we studied, indicating that the
object type vector contributes little at the beginning of the caption
generation process. But this value fluctuates along the generation
process. The object type vector has a stronger contribution to the
ancient Chinese art image captioning dataset than to the ancient
Egyptian art image captioning dataset.

5.2 Qualitative Analysis
We further study the results qualitatively to assess how the artwork
type improves captioning performance. Figure 3, 4, and 5 display
four artwork images, their captions generated by different models,
and their ground truth descriptions. The captions generated for
Figure 3(a) and Figure 3(c) demonstrate that model NIC is not able
to discriminate bowl and jar while the other three models managed
to do so. Therefore, both visual attention and the textual artwork
type can help to separate two alike images. Also, if we compare
the captions generated for Figure 3(a) by model LSTM-A5-MC and
our model LSTM-MC-OUTdynamic , it is easy to see that the latter



generates a more professional sentence with terminology words
‘Porcelain’ and ‘underglaze’. The captions generated for Figure 3(b)
and Figure 3(d) are two instances where our model LSTM-MC-
OUTdynamic performs better than all other models by putting the
artwork type vector together with the hidden representation out-
put in the decoder. In addition, the artwork type of the artifact
in Figure 3(b) ‘Print’ does not occur in the generated caption ‘Ink
and colours on paper’, indicating that the artwork type affects the
caption content in a latent way. We also notice that for both the
Egyptian art and the Chinese art datasets, the models generate
completely unrelated captions for some images and these captions
are mostly popular sentences in the training set. This is probably
caused by the lack of enough training data. To tackle this problem,
we already employed transfer learning from the visual side by using
ResNet18 pre-trained on ImageNet, but textual transfer learning
[23] leveraging the knowledge obtained from a model pre-trained
on a large textual corpus is not yet explored. This might be an
interesting research direction for future work. We also observe that
the captions in the Egyptian art image captioning dataset are not as
stereotypical as the captions in the ancient Chinese art image cap-
tioning dataset which mainly infer the artwork name, the material
indicated by cue phrases (e.g., ‘made of’) and some fine-grained
image details. The Egyptian dataset has large intra-class variance
in terms of image patterns, and its number of unique descriptive
words is twice the number of the Chinese art set, making the task
of image captioning of Egyptian artworks more difficult. These

factors prohibit the clear guidance of the decoder in the proposed
model LSTM-MC-OUTdynamic and is probably the reason why the
proposed model behaves differently on the two captioning datasets.

6 CONCLUSION AND FUTUREWORK
In this paper, we have introduced an artwork type enriched image
captioning model for ancient artworks and have implemented sev-
eral variants of it. The best model explicitly models the relative im-
portance of the artwork type vector and the hidden representation
in the LSTM decoding process where the modulating parameters
encoding the relative importance in this model are automatically
learned by the model during training. This model achieves promis-
ing results on two ancient artwork image captioning datasets. We
have also adapted three existing captioning models originally built
for the captioning of natural images in order to generate descrip-
tions of cultural heritage images. Finally, we have compared the
performance of all the models and give a comprehensive quantita-
tive and qualitative analysis of this task. In future research, we will
explore fine-grained cultural image/subimage [13, 17] annotation.
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