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Abstract

This paper presents DAMESRL1, a flexible and open source framework for deep semantic role
labeling (SRL). DAMESRL aims to facilitate easy exploration of model structures for multi-
ple languages with different characteristics. It provides flexibility in its model construction in
terms of word representation, sequence representation, output modeling, and inference styles
and comes with clear output visualization. Additionally, it handles various input and output for-
mats and comes with clear output visualization. The framework is available under the Apache
2.0 license.

1 Introduction

During the first decade of the 21st century, mapping from the syntactic analysis of a sentence to its se-
mantic representation has received a central interest in the natural language processing (NLP) community.
Semantic role labeling, which is a sentence-level semantic task aimed at identifying “Who did What to
Whom, and How, When and Where?” (Palmer et al., 2010), has strengthened this focus. Recently, sev-
eral neural mechanisms have been used to train end-to-end SRL models that do not require task-specific
feature engineering as the traditional SRL models do. Zhou and Xu (2015) introduced the first deep
end-to-end model for SRL using a stacked Bi-LSTM network with a conditional random field (CRF) as
the top layer. He et al. (2017) simplified their architecture using a highway Bi-LSTM network. More
recently, Tan et al. (2018) replaced the common recurrent architecture with a self-attention network, di-
rectly capturing relationships between tokens regardless of their distance, resulting in better results and
faster training. The work in deep end-to-end SRL has focused heavily on applying deep learning ad-
vances without considering the multilingual aspect. However, language-specific characteristics and the
available amount of training data highly influence the optimal model structure.

DAMESRL facilitates exploration and fair evaluation of new SRL models for different languages by
providing flexible neural model construction on different modeling levels, the handling of various input
and output formats, and clear output visualization. Beyond the existing state-of-the-art models (Zhou and
Xu, 2015; He et al., 2017; Tan et al., 2018), we exploit character-level modeling, beneficial when con-
sidering multiple languages. To demonstrate the merits of easy cross-lingual exploration and evaluation
of model structures for SRL provided by DAMESRL, we report performance of several distinct models
integrated into our framework for English, German and Arabic, as they have very different linguistic
characteristics.

2 Task Definition

Formally, the goal of end-to-end SRL is to predict a sequence (l1, l2, . . . , ln) of semantic labels given
a sentence (w1, w2, . . . , wn), and its predicate wp as input. Each li, which belongs to a discrete set of
PropBank BIO tags, is the semantic tag corresponding to the word wi in the semantic frame evoked

1The source code can be found at: https://liir.cs.kuleuven.be/software_pages/damesrl.php.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.



by wp. Here, words outside argument spans have the tag O, and words at the beginning and inside of
argument spans with role r have the tags Br and Ir, respectively. For example, the sentence “the cat
chases the dog .” should be annotated as “theB−A0 catI−A0 chasesB−V theB−A1 dogI−A1 .O”.

3 System Architecture

OutputSRL Model Construction 
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Figure 1: Schematic overview of the DAMESRL architecture from input to output.

DAMESRL’s architecture (see Fig. 1) facilitates the construction of models that prioritize certain
language-dependent linguistic properties, such as the importance of word order and inflection, or that
adapt to the amount of available training data. The framework, implemented in Python 3.5 using Tensor-
Flow, can be used to train new models, or make predictions with the provided pre-trained models.

3.1 Input and Output
The input/output format of DAMESRL is a shortened version of the CoNLL’05 format, which only
contains the Words, Targets and (possibly) Props columns2. DAMESRL also provides an HTML format
that can be directly visualized in the web browser (as in Fig. 2).

3.2 Model Construction Modules
As can be seen in Fig. 1, the framework divides model construction in four phases: (I) word representa-
tion, (II) sentence representation, (III) output modeling, and (IV) inference.

Phase I: The word representation of a word wi consist of three optional concatenated components: a
word-embedding, a Boolean indicating if wi is the predicate of the semantic frame (wp), and a character
representation. DAMESRL provides a Bi-LSTM network to learn character-level word representations
helping for languages where important SRL cues are given through inflections, such as case markings in
German and Arabic. Despite the foreseen importance, character-level embeddings have not been used in
previous work (Zhou and Xu, 2015; He et al., 2017; Tan et al., 2018).

Phase II: As core sequence representation component, users can choose between a self-attention en-
coding (Tan et al., 2018), a regular Bi-LSTM (Hochreiter and Schmidhuber, 1997) or a highway Bi-
LSTM (Zhang et al., 2016; He et al., 2017).

Phase III: To compute model probabilities, users can choose a regular softmax, or a linear chain CRF
as proposed by (Zhou and Xu, 2015), which can be useful for languages where word order is an important
SRL cue, such as English, or when less training data is available (shown in Section 4).

2http://www.lsi.upc.edu/s̃rlconll/conll05st-release/README

Figure 2: Screen-shot of the HTML Output



Phase IV: The inference phase provides two options for label inference from the computed model
probabilities including greedy prediction and Viterbi decoding.

4 Experiments

4.1 Settings

To evaluate our framework, and show the benefits of choosing certain model components, we construct
five models: HLstm, Char, CRFm, Att, and CharAtt, whose configurations are shown in Tab. 1. The

Table 1: Configurations of experimental models.
HLstm Char CRFm Att CharAtt

Word Emb. ✓ ✓ ✓
Word + Character Emb. ✓ ✓
Highway LSTM ✓ ✓ ✓
Self-Attention ✓ ✓
Softmax ✓ ✓ ✓ ✓
CRF ✓

Table 2: Training data.
English German Arabic

Source CoNLL’05 CoNLL’09 CoNLL’12
# Sentences 39832 36020 7422
Vocab. size 35094 67495 45683
# Predicates 90750 17400 20001

selected models are evaluated in three languages: English, German and Arabic (see Tab. 2) using the
standard CoNLL’05 metrics. Information about the used SRL data is shown in Tab. 2. We initialize
the weights of all sub-layers as random orthogonal matrices. The learning rate is fixed in the first N1

training epochs, and halved after every next N2 epochs. Detailed settings and the word embeddings used
to initialize the word representation layer used per language are found in Tab. 3.

Table 3: Experimental settings.
Setting Model Value
Optimizer All AdaDelta, ϵ = 1e−06
Learning rate All 1.0
Dropout probability All 0.1
Label smoothing value All 0.1
Word-emb size All 100
Word-emb type All GloVe
Batch size All 80 predicates
Early stopping patience All 100
N1 HLstm, Char, Att, CharAtt 400
N2 HLstm, Char, Att, CharAtt 100
N1 CRFm 100
N2 CRFm 30
# Max. training epochs Att, CharAtt 800
# Hidden layers Att, CharAtt 10
# Max. training epochs HLstm, Char, CRFm 500
# Hidden layers HLstm, Char, CRFm 8
Hidden layer size HLstm, Char, CRFm 300
Character-emb. size Char, CharAtt 100
Position Encoding Att, CharAtt Timing
Word-emb. data English Wikipedia+Gigaword3

Word-emb. data German Wikipedia
Word-emb. data Arabic None

Table 4: Training (Tr.) and prediction (Pr.) times (greedy) for English.
Tr. time / epoch Pr. time / predicate

HLstm 10 mins 8.5 ms
Char 12 mins 15.5 ms
CRFm 8 mins 11.4 ms
Att 2 mins 3.4 ms
CharAtt 5 mins 4.2 ms

3From: https://nlp.stanford.edu/projects/glove/



Table 5: Results on CoNLL’12 Arabic and CoNLL’09 German data: precision (P), recall (R), and F1.4
Arabic German

Model
Development Evaluation Development Out-Of-Domain Evaluation

P R F1 P R F1 P R F1 P R F1 P R F1
HLstm 46.2 45.2 45.7 47.4 45.3 46.3 67.9 66.4 67.1 55.6 57.2 56.4 68.2 67.1 67.6
Char 51.2 50.2 50.7 47.5 46.0 46.7 69.1 66.5 67.8 54.0 55.2 54.6 68.2 67.0 67.6
CRFm 50.8 47.7 49.2 51.9 48.0 49.9 68.7 66.0 67.3 55.3 53.8 54.6 65.8 64.4 65.1
Att 50.4 48.0 49.2 50.0 46.7 48.3 71.6 70.8 71.2 54.7 56.8 55.7 71.9 71.5 71.7
CharAtt 56.9 56.0 56.5 56.0 54.5 55.2 74.8 73.8 74.3 57.2 57.3 57.3 73.4 73.6 73.5

Table 6: Results on CoNLL’05 English data: precision (P), recall (R), and F1. We compare our results
with other state-of-the-art deep single models.

Model
Development Out-Of-Domain Evaluation

P R F1 P R F1 P R F1
Lstm + CRF (Zhou and Xu, 2015) 79.7 79.4 79.6 70.7 68.2 69.4 82.9 82.8 82.8
HLstm (He et al., 2017) 81.6 81.6 81.6 72.9 71.4 72.1 83.1 83.0 83.1
Att (Tan et al., 2018) 82.6 83.6 83.1 73.5 74.6 74.1 84.5 85.2 84.8
HLstm-ours 82.2 81.9 82.0 72.6 71.2 71.9 83.4 82.8 83.1
Char 82.3 82.1 82.2 73.3 71.7 72.5 83.8 82.9 83.4
CRFm 81.9 81.5 81.7 72.0 69.6 70.9 84.0 83.1 83.5
Att-ours 83.0 83.4 83.2 74.5 72.9 73.7 84.8 84.7 84.8
CharAtt 83.6 83.5 83.5 73.5 72.6 73.0 85.0 84.8 84.9

Table 7: F1 scores on CoNLL’05 English data, CoNLL’09 German data and CoNLL’12 Arabic data using
2000 random training sentences: Dev (Development), Eval (Evaluation), and Ood (Out of Domain).

Model
English German Arabic

Dev Eval Ood Dev Eval Ood Dev Eval
HLstm-ours 62.8 54.3 64.9 42.34 45.58 40.44 35.12 34.42
Char 64.8 55.2 65.8 43.99 47.64 42.39 36.52 37.01
CRFm 65.8 57.5 67.0 43.42 44.06 40.73 38.91 38.36
Att-ours 57.4 51.7 59.6 32.48 37.13 31.45 23.38 23.32
CharAtt 58.2 52.4 60.7 33.35 38.49 31.91 35.10 34.70

4.2 Results and Discussion

In Tab. 5-6, we compare the five models on English, German and Arabic. The proposed CharAtt out-
performs all other models in almost all cases except the English out-of-domain setting. As can be seen
in Tab. 6, our implementation achieves competitive performance to other state-of-the-art systems for En-
glish. To the best of our knowledge, we report the first SRL results (in CoNLL’05 metrics) for German
and Arabic without using linguistic features.

In general, we find that using character embeddings improves the performance of HLstm and Att, al-
though at a cost of increased processing time. Interestingly, using character embeddings is particularly
effective for the Att model. One explanation could be that character embeddings are important for learn-
ing good attention masks as they encode information about the syntax of words and the sentence, e.g., it
facilitates the system in learning that the number (singular/plural) of a subject and its verb should match.

Among the three languages, the performance gain by character-level representations is larger for Ger-
man and Arabic than for English. This can be explained by the much larger vocabularies for German and
Arabic combined with the smaller training datasets (#sentences, and #predicates) for these languages.
Moreover, many grammatical cases, which are very strong predictors for semantic roles, are explicitly

4Note that the CoNLL’09 data is automatically converted to CoNLL’05 format using the script by Björkelund et al. (2009).



marked through use of inflection in German and Arabic.
To evaluate the influence of the training size on model performance, we train the models on a random

sample of 2000 sentences for each language (see Tab. 7). Intriguingly, the attention models perform worst
in this setting, indicating their need of large datasets. A reason for this could be that the attention models
consider the sequential dependency between hidden states to a lesser degree than recurrent models do. In
contrast, CRFm achieves the best results for English and Arabic, and the second best result for German.
In fact, CRFm exploits not only the input sequence – using the LSTM – but also the sequential output
dependencies, to compute output probabilities. We can see that this is very beneficial when less training
data is available, especially when word order is a strong cue for SRL, which applies well for a strict
word order language like English. For such cases the output dependencies can be learned even from less
training data, which results in the CRFm model to excel. As can be seen in Tab. 7, when comparing Char
with HLstm-ours and CharAtt with Att-ours, the benefit of using character embeddings is demonstrated
on small datasets as well.

5 Conclusions

We introduced an open source SRL framework, DAMESRL, which provides flexible model construction,
using state-of-the-art model components, handles various input and output formats, and which comes
with clear output visualization. Using our framework, we slightly improve the state-of-the-art results of
single end-to-end deep systems on the English CoNLL’05, and report the first experimental end-to-end
deep SRL results for German5 and Arabic5. We have shown that the flexible model construction provided
by the framework is crucial for exploring good model structures when considering different languages
with different characteristics, especially when training data is limited. DAMESRL is made available
under the Apache 2.0 license.
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