
A Dataset for the Evaluation of
Lexical Simplification

Jan De Belder and Marie-Francine Moens

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
jan.debelder@cs.kuleuven.be, sien.moens@cs.kuleuven.be

Abstract. Lexical Simplification is the task of replacing individual words
of a text with words that are easier to understand, so that the text as
a whole becomes easier to comprehend, e.g. by people with learning dis-
abilities or by children who learn to read.
Although this seems like a straightforward task, evaluating algorithms
for this task is not so. The problem is how to build a dataset that provides
an exhaustive list of easier to understand words in different contexts, and
to obtain an absolute ordering on this list of synonymous expressions.
In this paper we reuse existing resources for a similar problem, that
of Lexical Substitution, and transform this dataset into a dataset for
Lexical Simplification. This new dataset contains 430 sentences, with
in each sentence one word marked. For that word, a list of words that
can replace it, sorted by their difficulty, is provided. The paper reports
on how this dataset was created based on the annotations of different
persons, and their agreement. In addition we provide several metrics for
computing the similarity between ranked lexical substitutions, which are
used to assess the value of the different annotations, but which can also
be used to compare the lexical simplifications suggested by an algorithm
with the ground truth model.

1 Introduction

The Lexical Simplification (LS) problem can be defined as substituting words
with easier alternatives, so that the text becomes easier to comprehend. Impor-
tant is that the meaning of the original text is not altered, and that it remains
fluent.

There are several reasons why we would want to make text easier to un-
derstand. Different groups of readers are confronted with the difficulty of texts:
adults who suffered a brain injury, deaf persons [13], young readers, non-native
speakers [12] and readers with low literacy skills [15, 1]. Although these differ-
ent groups find texts difficult for different reasons, the causes that make texts
hard to comprehend overlap to a large degree. What makes a sentence difficult
to understand can usually be attributed to one of two factors or both: the lex-
ical difficulty (i.e. difficult words and phrases) and/or the syntactic difficulty

(i.e. complex grammatical constructs). After more than a decade since its first
appearance in the literature [5], Lexical Simplification is receiving a renewed
interest [18, 17, 1]. However, the evaluation still remains problematic.

In this paper we discuss how to create ground truth models used in the evalu-
ation of the Lexical Simplification task. Previous research usually only performed
a partial evaluation, e.g. by determining whether a replacement is simpler with-
out taking the context into account, thereby bypassing the difficult Word Sense
Disambiguation aspect. Furthermore, it is difficult to compare between methods,
since it requires human judgments, which are hard to reproduce. Evaluating a
different parameter means running a whole set of evaluations again, which is a
tedious and expensive process.

We aim to overcome these problems by developing a corpus on which Lexical
Simplification methods can be evaluated. We start from an existing corpus for
a related task: that of Lexical Substitution. More specifically, we started from
the LexSub dataset from the SemEval 2007 Lexical Substitution task [11]. For a
given word, annotators provided alternative words that could replace the original
word, without changing the meaning of the sentence (too much). This solves the
problem of generating words that fit in the context. We extend this dataset by
ordering the alternative words by difficulty. With this dataset, we can evaluate
different methods.

This paper reports on how this dataset was created based on the annotations
of different persons, and their agreement. We also show how we combine the
different annotations to a single list of sorted words. In addition we provide
several metrics for computing the similarity between ranked lexical substitutions,
which are used to assess the value of the different annotations, but which can
also be used to compare the lexical simplifications suggested by the machine
with a ground truth model.

In the next section, give an overview of the evaluation methodologies in pre-
vious research. Section 3 provides the details of the origin of the dataset and
the Lexical Substitution task. In section 4, we provide details on our annota-
tion process. In section 5, we analyze the results of the annotation process, and
determine the quality. After assessing how reliable it is, we suggest some met-
rics of evaluating algorithms with it, presented in section 6. We end with our
conclusions in section 7.

2 Previous evaluations

In previous work, the focus was mainly on the methods for Lexical Simplification.
In this section, we will not discuss the different methods and their results, but
instead concentrate on the evaluation methodologies.

[17] extracts simplification from the edit history in simple Wikipedia. The
method is a probabilistic model, so that a distinction can be made between edits
that remove spam, edits that correct spelling errors, and actual simplifications.
The evaluation was done by selecting 200 edits from each of the models (100
random, and the 100 most probable), e.g. “annually” → “every year”, and let-

ting 3 native speakers rate these. The possible answers were “simpler”, “more
complex”, “equal”,“unrelated”, and “?” (hard to judge). By collapsing these to
“simplification”, “not a simplification”, and “?”, an inter annotator agreement of
kappa = 0.69 is obtained. However, these simplification are evaluated out of their
original context, whereas previous research has shown that this is important [8].

In [18] the authors focused on context-specific lexical paraphrases. The method
uses the Web to find and validate alternative wordings. The evaluation is done
on a set of 257 news article headlines, taken from Chinese online newspapers.
The measures used are precision and recall, although the authors recognize the
difficulty of evaluating the recall. The latter is approximated by grouping all
the correct answers from all of the methods they evaluated, and assuming this
set is an exhaustive set of all the answers. The precision is based on manual
judgments, but the authors do not specify by whom this was judged.

The method in [2] makes a distinction between finding pairs of synonyms,
and a context aware approach that decides when to substitute, so it can be
used in conjunction with e.g. the method from [17]. The dataset consisted of 65
sentences from Wikipedia, for which their method simplified exactly one word,
and the baseline (the method from [5]) was also able to simplify that word (but
to a different one). The evaluation was done in a thorough way, rating the de-
gree of simplification (simpler or not), meaning preservation (preserves meaning
or not) and grammaticality preservation (bad, ok, good) of the substitutions.
The annotations were divided among three native English speakers, and a small
portion was annotated multiple times to calculate the pairwise inter annotator
agreement, which was moderate for all categories (kappa between .35 and .53).

[19] describe a more complex method, that also performs syntactic opera-
tions, by treating the problem of text simplification as a monolingual machine
translation problem, in which sentences from English Wikipedia are translated
to a sentences from the Simple Wikipedia. The evaluation was done by simplify-
ing 100 sentences from the English Wikipedia, held out from the training data,
and using machine translation measures (BLUE and NIST scores) to compare
the generated sentences with the gold standard, i.e. the aligned sentences from
Simple Wikipedia.

[16] also perform text simplification, and use the same dataset as [19] for
evaluating their method. Next to the machine translation measures, they also
engage humans in the evaluation on 64 of the 100 sentences. 45 unpaid volunteers
rated the simplifications in three separate experiments: one that decided whether
or not the simplified sentence was simpler than the original, a second experiment
to rate the grammaticality of the simplified sentences, and a third to indicate
how well meaning was preserved. All ratings were on a five point Likert scale.

3 Selecting a dataset

We create ground truth data by building further on another dataset, constructed
for a similar task. With this latter we refer to the SemEval 2007 Lexical Sub-
stitution task [10]. This task had a similar objective: given a sentence with one

marked word, replace this word with another word, so that it still fits the con-
text. The idea behind this task was Word Sense Disambiguation in a practical
setting. Lexical Substitution (LEXSUB) is a more general problem than the one
we are faced with here. For substitution, any replacement that fits the context
is a valid solution, whereas for simplification we want valid replacements that
are also easier to understand.

The dataset used for the Lexical Substitution task [10] consists of 201 words,
which were chosen at random. For each of the words, 10 sentences were retrieved
that contained the word or a conjugated form of the word. The sentences were
selected from the English Internet Corpus of English produced by Sharoff [14],
obtained by sampling data from the Web1.

The LEXSUB dataset thus consists of 2010 sentences in total. For each of
these sentences, five annotators provided up to three words that could replace
the indicated word in each sentence. The annotators also had the possibility of
indicating they couldn’t think of a better replacement.

To transform this to a Lexical Simplification dataset, we first remove those of
the 201 words that are on a list of ‘easy words’. We take this list of easy words to
be the union of the ‘Basic English combined word list’ from Simple Wikipedia2,
and the 3000 words from the Dale-Chall readability measure3. It is unlikely that
those easy words will have to be simplified, or even can be simplified, so we do
not include them in the annotation process. After removal there were 43 words,
or 430 sentences, remaining. Later we show that these words are almost always
ranked highest in the list, and therefore refrain from annotating them.

This dataset offers a great starting point, as it provides an exhaustive list of
alternative words that can replace a given word, based on the context (i.e. the
sentence).

4 Annotating the dataset

We started from the same dataset, using the alternative words generated by the
annotators as a set of valid alternatives. To convert this dataset from a Lexical
Substitution problem to a Lexical Simplification problem, we have to sort the
words by their difficulty.

4.1 Methodology

We ask the annotators to rank the different alternatives according to how easy to
understand they are in the given sentence. We also include the original word in
this list of words to be sorted, so we know which alternatives are easier, equally
hard, or harder to understand compared to the original. Furthermore, we allow
the annotators to rank different words at the same position, for the cases where
they think two words are equally difficult.

1 http://corpus.leeds.ac.uk/internet.html
2 http://simple.wikipedia.org/wiki/Wikipedia:Basic English combined wordlist
3 The percentage of words in a text and not on this list is used as an indicator of

difficulty.

4.2 Annotators

We used two different groups for the annotations. The first is Amazon Mechanical
Turk4. The advantage is that it is cheap, in comparison to hiring professionals,
and the results can be obtained very fast since multiple people can work on it.
We requested five annotators for each sentence, located in the U.S. and that
completed at least 95% of their previous assignments correctly.

However, there are also people on Mechanical Turk who are keen to finish
their assignments as quickly as possible, and this might have a negative effect on
the quality. Therefore we also had part of the dataset annotated again, by PhD
students5. Two more annotations for roughly half the sentences were obtained
this way. Using these annotations, we can test the quality of the Mechanical
Turk annotations.

In total 46 different Turkers participated, each providing on average 29.5
annotations. The other annotations came from 9 different PhD students, with
on average 85.9 annotations.

5 Analysis of the dataset and the annotations

5.1 Measuring annotator agreement

To get an idea of the quality of the annotations, we look into methods of calcu-
lating the inter annotator agreement. This is not an easy task, since the chance
that two rankings are completely identical is very small.

In what follows, let us define anni to be the i-th annotator, nann the number
of annotators, wj the j-th word in the list of alternatives, and ranki(wj) the rank
given by anni to word wj . All the equations below are based on the replacement
of a single word in one sentence.

Fleiss’ kappa A typical measure is Cohen’s kappa [3], but unfortunately this
works only for binary classification problems, with two annotators. To solve the
problem of multiple annotators, a solution is to compare each annotator to the
majority vote of the other annotators. This is still difficult, since the majority
of a ranking is hard to define.

An extension of this measure is Fleiss’ kappa [7], that extends to multiple
annotators and multiple classes. Although we don’t have multiple classes, we can
convert our ranking problem into a suitable form. We can do so by taking each
two words (wi, wj) in the list, and put them in one of three categories: wi and wj

are ranked equally difficult, wi is ranked easier than wj , and wi is ranked more
difficult than wj . By doing so, we are able to use the Fleiss’ kappa measure. Like
for Cohen’s kappa, a Fleiss’ kappa value of 1 means perfect agreement between
the annotators.

4 http://www.mturk.com
5 Although their native language isn’t always English, they have a more than average

understanding.

Rank correlation A more appropriate measure would be the Spearman rank
correlation coefficient. This takes into account the natural ranking of the words
provided by the annotators, rather than having to convert it to a set of pairwise
comparisons. The Spearman rank correlation coefficient is defined as

ρ =

∑
j(rank

′
i(wj)− rank′i)(rank′k(wj)− rank′k)√∑

j(rank
′
i(wj)− rank′i)2

∑
j(rank

′
k(wj)− rank′k)2

(1)

where rank′i is the average rank of the words given by annotator i. Often words
are ranked at the same position by the annotators, and ties here are solved by
assigning them the average of their rank. So a ranking of ((w1), (w2,w3,w4),
(w5)) will assign a rank 1 to w1, and rank 3 (2+3+4

2) to w2,w3 and w4. This is
indicated by the use of rank′ instead of rank in equation 1.

To extend this to a one annotator versus majority case, we define the rank
assigned by the second annotator to be the average of the ranks given by the
other annotators. The correlation coefficient is a number between −1 and +1,
with 0 indicating that there is no dependence.

Penalty based agreement A third measure we can use to evaluate the agree-
ment, is based on penalties. For each word that is ranked at a different position
by two annotators, a penalty is given, proportional to the difference in distance.
For each word, we can calculate the following score:

score(wj) = 1− |ranki(wj)− rankk(wj)|
maxlrankk(wl)

(2)

This is similar to the measure used in [4], for comparing rankings. The items
ranked there were names, and they were ordered according to the importance of
them in a picture.

However, in [4], this was used to compare a generated ranking with an expert
ranking. To extend this to our case, where we compare one annotator anni
against the remainder of the annotators, we give a penalty for each annotator:

score(wj) = 1− 1

nann − 1

nann∑
k=1,k 6=i

|ranki(wj)− rankk(wj)|
maxlrankk(wl)

(3)

5.2 Outlier removal

In table 1 we provide the inter annotator agreement measures, discussed above,
for the initial annotations retrieved from Mechanical Turk. Although the Fleiss’
kappa measure looks low, agreement seems reasonable.

In order to improve the quality of the dataset, we will filter out some of the
less accurate annotators. To illustrate we plotted the annotators on a graph, as
can be seen in figure 1. On the y-axis there is the inter annotator agreement,
as measured with the rank correlation agreement, that would be obtained by

Measure Score

Fleiss’ Kappa 0.486
Rank Correlation 0.592
Penalty Based 0.716

Table 1: Agreement of the annotators, ini-
tial dataset.

Measure Score

Fleiss’ Kappa 0.488
Rank Correlation 0.602
Penalty Based 0.724

Table 2: Agreement of the annotators, after
filtering the dataset.

removing a specific annotator. On the x-axis, there is the median submit time
for a set of 10 sentences. It is interesting to note that there seems to be little
correlation between the average submit time and the quality of the work.

Fig. 1: Graphical representation of the annotators, with on the x-axis the average sec-
onds to completion of 10 sentences, and on the y-axis the change in agreement by
removing the annotator.

We removed the four annotators that would result in a maximal increase in
agreement between the annotators, and had their annotations redone. This re-
sulted in the agreement scores as can be seen in table 2. Although the agreement
scores are higher, the change does not seem to be very remarkable.

5.3 Evaluation of quality

With a Fleiss’ kappa score of 0.488, we can assume we have only a moderate
agreement [9]. This measure takes into account agreement by chance. However,
as noted often in the literature [6], it can be misleading. One factor that reduces
the agreement, is that the measure as we use it is very strict: if annotator 1
ranks two words as being equally hard, and annotator 2 ranks them directly
below each other, this is a disagreement, although in reality the two answers are
closely related.

The Spearman rank correlation ρ of 0.602 indicates there is certainly a cor-
relation between the annotations; if not ρ would be 0.

As a check for testing the quality of the annotations, we compare the agree-
ment between the annotations between Turkers and the agreement between the
annotations done by the students. This is only for a subset of the data (200 of
the 430 sentences), and only two annotations were provided for each sentence.
The results are in table 3. It can be seen that the annotators are in larger dis-
agreement than the Turkers, illustrating the difficulty of this task, although the
smaller number of annotators has to be taken into consideration.

Measure Score

Fleiss’ Kappa 0.393
Rank Correlation 0.451
Penalty Based 0.691

Table 3: Agreement of the student annotators

Fig. 2: Correlation between the inter annotator agreement metrics

In figure 2 we created a graphical representation of the correlation between
the different measures we used for calculating the inter annotator agreement.
Each point on the graphs is an annotator, positioned according to the agreement
with the rest of the annotators.

5.4 Merging annotations

In this section we convert the multiple rankings from the annotators to a single
gold-standard ranking. One way of doing this, is by taking all the pairwise com-
parisons from all the annotators, and using the most frequent6 ordering between
each two words. For example, if annotator 1 and 2 rank word w1 higher than w2,
and annotator 3 ranks them equal, then the most frequent pairwise ranking is
w1 > w2. A problem with this approach is that it can cause inconsistencies: the
total ordering is not guaranteed anymore. For example, suppose annotator 1 an-
swered ((w2), (w3), (w1)), annotator 2 answered ((w1), (w2, w3)), and annotator
3 ((w1, w2, w3)). Then the most frequent orderings are (w1 = w2), (w1 = w3),
(w2 > w3), which leads to w1 = w2 > w3 = w1, or w1 > w1.

The previous way of merging the annotations to a single ordering neglects
two factors. First, the distance between two words is not taken into account. In
the example above, the first annotator ranked w2 and w1 further apart then the
other annotators, but this is not reflected. A second factor is that the quality of
the annotators is not taken into account: the opinion of each annotator weighs
equally, but some are more accurate than others.

With these two considerations in mind, we resort to a noisy channel model
method of finding the optimal ordering. With this framework, we can define the
source model to be the real ordering of the words, that is at this point unknown.
The channel through which we observe this real ordering, is in the form of the
annotators, that generate their annotations based on the real ordering, but with
additional noise (errors).

We can then calculate the optimal real ordering for the alternative words of
a sentence as:

maxh

nann∏
i=1

rel(anni)sim(h, annotationi) (4)

in which rel is the reliability of an annotator, and sim is the similarity of the
hypothesis real ordering h and the annotation annotationi provided by the i-th
annotator. We can calculate the similarity by simply reusing equation 1 or 3. For
the reliability of an annotator, we also use these equations, in the form of the
agreement with the combined annotation of all the other annotators, averaged
over all the sentences he/she annotated. In the remainder of this section, we
report on the orderings obtained by using the penalty based method from section
5.1.

6 When w1 > w2, w1 = w2, and w1 < w2, we assume w1 = w2 is the most frequent.

5.5 Properties of the dataset

After combining the annotations into a single ordering, we can calculate its
properties. In 70.5% of the sentences the word can be replaced by one or more
simpler words. In 75.6% of the cases, there is also one or more word that is
equally hard. Finally, in 71.6% of the cases there are words that are harder.

The average number of alternative words is 5.04. Since we allowed annotators
to rank words on the same level of difficulty, there are on average 3.03 levels.

To illustrate what the dataset looks like, in table 4 there are number of exam-
ple sentences and alternative words, sorted by difficulty. The two last examples
are for the same word, severely, showing the dependency on the context.

Finally, to prove our hypothesis that words that are on the list of easy words
are already the easiest word, and can’t be simplified further, we also had sen-
tences for five of those words annotated, yielding 50 sentences. For those words,
there was only a simpler word in 10% of the cases, illustrating that it is probably
better to select new words and sentences altogether.

• Rabbits often feed on young, tender perennial growth as it emerges in spring, or
on young transplants. [[soft], [tender, delicate]]
• Performance test for a system coupled with a locally manufactured station engine
model MWM will start shortly. [[shortly, soon], [before long], [presently]]
• Perhaps the effect of West Nile Virus is sufficient to extinguish endemic birds
already severely stressed by habitat losses. [[highly], [seriously, severely, extremely],
[gravely], [critically]]
• Mutual Funds are so severely conflicted that they will not avail themselves of
the alleged benefits of the proposed rule. [[badly], [seriously, severely, heavily],
[extremely, gravely]]

Table 4: Examples sentences with alternative words.

6 Metrics

Now that we have merged the different annotations into a single dataset, we can
use it for the evaluation of Lexical Simplification methods. In this section, we
will define three metrics to do so, but each time with a different goal.

6.1 Binary metric

When practically using the Lexical Simplification algorithms to simplify text,
only a single solution can be used (i.e. a word can only be replaced by one other
word). Because we included the original word each time in the list of words to
be sorted, we can position the other words relative to the original word. We then

define a scoring function as follows:

scorebin(wj) =

+1, if wj is easier.

0, if wj is equally hard, harder,

or not in the list of alternatives.

(5)

6.2 Rank evaluation

For a more extensive evaluation, multiple words can be generated in a sorted
list. This brings us back to calculating the similarity between two rankings, a
topic that we investigated in detail in section 5.1. Our penalty based method is
based on a method for comparing a generated ranking with an expert ranking,
so we can use this in its original form:

scorepenalty(wj) = 1− |rank(w)− rankgold(wj)|
maxlrankgold(wl)

(6)

6.3 Precision and recall

Similar to the evaluation in [18], we can calculate the precision and recall, and
use these to compute the F-measure. To determine recall, we define the number
of easier alternatives as neasier as #{wj |rankgold(wj) < rankgold(worig)}

P =

∑
j scorebin(wj)

maxlrank(wl)
R =

∑
j scorebin(wj)

neasier
(7)

7 Conclusions

The Lexical Simplification of text entails replacing difficult words with words
that are easier to understand. But this is a problem that is hard to evaluate,
e.g. because the simplifications are context-dependent, and an exhaustive list
of simplifications is hard to generate. In this paper, we have shown how we
created a dataset7 for this problem. By reusing an existing dataset for Lexical
Substitution, with an exhaustive enumeration of all possible words that can
replace a word, we solve the problem of not being able to measure the recall.

Starting from the Lexical Substitution dataset, we have first filtered out
words that were too easy to simplify. Next we had annotators sort the different
alternative words according to their simplicity, taking into account the context
of the original word in the sentence. For these annotations we calculated several
inter annotator agreement measures. The main source of the annotations comes
from Mechanical Turkers, and we have shown that their agreement is similar to
that of less ‘time biased’ annotators. After removing a number of outliers, we
merged the annotations into a single gold standard, by interpreting it as a noisy

7 Available at http://people.cs.kuleuven.be/~jan.debelder/lseval.zip.

channel problem. Finally, we suggested a number of scoring metrics that can be
used with this gold standard.

In the future, we will use this dataset to evaluate Lexical Simplification algo-
rithms. A weakness is that the original dataset replaced words mostly by other
single words, i.e. multi word expressions are not very common.

Acknowledgments

This research is funded by the EU project PuppyIR8 (EU FP7 231507) and the
EU project TERENCE 9 (EU FP7 257410).

References

1. Alúısio, S., Gasperin, C.: Fostering digital inclusion and accessibility: the porsim-
ples project for simplification of Portuguese texts. In: Proceedings of the NAACL
HLT 2010 Young Investigators Workshop on Computational Approaches to Lan-
guages of the Americas. pp. 46–53 (2010)

2. Biran, O., Brody, S., Elhadad, N.: Putting it simply: a context-aware approach to
lexical simplification. In: Proc. of the 49th Annual Meeting of the ACL: HLT. pp.
496–501. Association for Computational Linguistics (2011)

3. Cohen, J., et al.: A coefficient of agreement for nominal scales. Educational and
psychological measurement 20(1), 37–46 (1960)

4. Deschacht, K., Moens, M., Robeyns, W.: Cross-media entity recognition in nearly
parallel visual and textual documents. In: Large Scale Semantic Access to Con-
tent (Text, Image, Video, and Sound). pp. 133–144. Le Centre De Hautes Etudes
Internationales D’informatique Documentaire (2007)

5. Devlin, S., Tait, J.: The use of a psycholinguistic database in the simplification of
text for aphasic readers. Linguistic Databases pp. 161–173 (1998)

6. Eugenio, B., Glass, M.: The kappa statistic: A second look. Computational Lin-
guistics 30(1), 95–101 (2004)

7. Fleiss, J.: Measuring nominal scale agreement among many raters. Psychological
Bulletin 76(5), 378 (1971)

8. Lal, P., Ruger, S.: Extract-based summarization with simplification. In: DUC 2002:
Workshop on Text Summarization, July 11–12, 2002, Philadelphia, PA, USA (2002)

9. Landis, J., Koch, G.: The measurement of observer agreement for categorical data.
Biometrics 33(1), 159 (1977)

10. McCarthy, D., Navigli, R.: Semeval-2007 task 10: English lexical substitution task.
In: Proc. of the 4th International Workshop on Semantic Evaluations (SemEval-
2007). pp. 48–53 (2007)

11. McCarthy, D., Navigli, R.: The English lexical substitution task. Language Re-
sources and Evaluation 43(2), 139–159 (2009)

12. Petersen, S.: Natural language processing tools for reading level assessment and
text simplification for bilingual education. Ph.D. thesis, University of Washington
(2007)

13. Quigley, S., Paul, P.: Language and deafness. College Hill Books (1984)

8 http://www.puppyir.eu
9 http://www.terenceproject.eu/

14. Sharoff, S.: Open-source corpora: Using the net to fish for linguistic data. Interna-
tional Journal of Corpus Linguistics 11(4), 435–462 (2006)

15. Shewan, C., Canter, G.: Effects of vocabulary, syntax, and sentence length on
auditory comprehension in aphasic patients. Cortex: A Journal Devoted to the
Study of the Nervous System and Behavior (1971)

16. Woodsend, K., Lapata, M.: Learning to simplify sentences with quasi-synchronous
grammar and integer programming. In: Proc. of the 2011 Conference on Empirical
Methods in Natural Language Processing. pp. 409–420 (2011)

17. Yatskar, M., Pang, B., Danescu-Niculescu-Mizil, C., Lee, L.: For the sake of simplic-
ity: Unsupervised extraction of lexical simplifications from Wikipedia. In: Human
Language Technologies: The 2010 Annual Conference of the NAACL. pp. 365–368
(2010)

18. Zhao, S., Liu, T., Yuan, X., Li, S., Zhang, Y.: Automatic acquisition of context-
specific lexical paraphrases. In: Proc. of the IJCAI. pp. 1789–1794 (2007)

19. Zhu, Z., Bernhard, D., Gurevych, I.: A monolingual tree-based translation model
for sentence simplification. In: Proc. of the 23rd International Conference on Com-
putational Linguistics (2010)

